Welcome to Jeff's CHEM 4 lecture! We'll be starting in just a bit...

While you are waiting:

- Go to <u>LearningCatalytics.com</u> to prepare for today's clicker questions. Login with your MasteringChemistry login. Session ID = _____
- 2) Let us know in the chat... what is your favorite childhood memory? Mine is the huge summer picnics we'd have at my grandparent's house with tons of food and all my cousins.

Are up keeping up with CHEM 4?

✓ CHEM 4 Website: <u>tinyurl.com/SacStateChem4</u>

Check Aug/Sept calendar for PowerPoint slides, readings, and homework.

✓ Help:

✓ Jeff's office hours: MWF 9 – 9:30 am and 11 - 11:30 am; and by appointment

✓ PAL office hours: link is on our CHEM 4 website

✓ Can email me questions: Show question and email picture of work

✓ Homework:

 \checkmark Ideally, do it after every lecture so you are prepared for next class.

✓ If you occasionally do your homework late, you will get credit for it.

✓ Clickers:

✓ Automatic 2 pts for each time you vote (right or wrong).

✓ Don't vote in a class you aren't registered in!!!!!

✓ If you are here, but unable to vote, message me in Zoom chat.

✓ Optional:

✓ *Commit to Study (C2S)* – Allows you to drop lowest exam.

Changes to CHEM 4

Security for Zoom lectures:

- ✓ Requires a password.
- ✓All student microphones are muted (can't unmute yourself). We'll use chat for asking/answering questions.
- ✓ Your User ID should be your full name and should match my roster. I will remove other students from the session.
- ✓ To change your User ID, log into <u>https://csus.zoom.us/</u>
- ✓ Click "profile" and "edit"

Review clicker question (Coves material from last lecture)

Go to <u>LearningCatalytics.com</u> and login with your MasteringChemistry (Session ID =

1) A 24.3 g sample of pure water is found to contain 21.6 g of oxygen. What mass of hydrogen can be isolated from a 95.0 g sample of pure water?

Chemistry in the News [Note: you won't be tested on this]

Life on Venus? Astronomers See a Signal in Its Clouds

By Shannon Stirone, Kenneth Chang and Dennis Overbye *The New York Times*, Published Sept. 14, 2020

- An international team of astronomers, led by Professor Jane Greaves of Cardiff University, announced the discovery of a rare molecule—phosphine—in the clouds of Venus.
- While phosphine had previously been detected in the atmospheres of Jupiter and Saturn, their immense heat and pressures can jam the phosphorus and hydrogen atoms together so life isn't necessary to form phosphine.
- On smaller, rocky planets like Earth and Venus there is not enough energy to produce copious amounts of phosphine in the same way. There is one thing, however, that appears to be very good at producing it: anaerobic life, or microbial organisms that don't require or use oxygen.

CHEM 4 lecture

Wednesday – September 16, 2020

Sec 5.4, 4.7, 5.5

Ionic Compounds

Reading clicker question (covers material from today's assigned reading) Go to LearningCatalytics.com and login with your MasteringChemistry (Session ID =

- 2) Which of the following statements is false?
 - A) Gaining electrons results in the formation of a positively charged ion.
 - B) Molecular compounds are formed from two or more non-metals.
 - C) Positively charged ions are called *cations*.
 - D) Ionic compounds typically contain both metals and non-metals.
 - E) Negatively charged ions are called *anions*.
 - F) Ionic compounds contain positive and negative ions in a ratio that cancels out their charges.

Background: Classifying matter

Elements and compounds can be further categorized...

Background: Compare/contrast ionic and molecular compounds

	Ionic compounds:		Molecular compounds:
A.K.A.	• "salts"	•	"covalent compounds"
Composition:	 Contains both cations (typically metals) and anions (typically 	•	Contains only nonmetals H and the metalloids are
	 nonmetals) NH⁺ can take the place of a metal 		considered as nonmetals
Examples:	 NaCl, CaBr₂, Fe(NO₃)₃, Al₂(SO₄)₃ 	•	CO_2 , NH_3 , H_2O
	• NH ₄ OH	•	C ₈ H ₁₈ (octane), C ₆ H ₁₂ O ₆ (glucose)
		•	SiH ₄
Typical	 high melting/boiling points 	•	lower melting/boiling points (can
properties:	(usually solid)		be solid, liquid, or gas)
	• conduct electricity when dissolved	•	Usually not soluble in water and
	in water		usually don't conduct electricity if
	 hard; brittle 		they do dissolve
		•	flammable if contain C, H.

Progress clicker question (covers material we are learning now) Go to <u>LearningCatalytics.com</u> and login with your MasteringChemistry (Session ID =

3) Which of the following chlorine containing compounds are ionic? Feel free to look at your periodic table.

- A) $CuCl_2$, $AlCl_3$, PCl_5
- B) HCl, CCl₄, NH₄Cl, PCl₅
- C) CuCl₂, AlCl₃, CaCl₂

Remember: Even though NH₄Cl doesn't have any metal atoms, the presence of the NH₄⁺ ion means it is categorized as an ionic compound.

Background: Compare/contrast ionic and molecular compounds

	Ionic compounds:	Molecular compounds:
Reason why they form:	 Atoms want same # of electrons as nearest noble gas 	 Atoms want same # of electrons as nearest noble gas
Mechanism of formation:	 One or more electrons are transferred from the metal to the nonmetal Results in cations (+ ions) and anions (- ions) held together by electrostatic attraction 	 Shares electrons between the nonmetals Results in neutral molecules

Background: Atoms prefer to have the same # of e⁻ as the nearest noble gas...

	Note: Sometimes the nearest noble gas is found by going backwards on the periodic																Noble gases
1 H	table For e	able to a lower atomic number. For example: the nearest noble gas to Li is He, so Li wants to get 2 e- like He								Т	ີ he nea so F w	arest r vants t	noble o get	gas to 10 e-	F is N like N	le, e	2 He
³ Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
6.941 11	9.012 12	10.81 12.01 14.01 16.00 19.00 13 14 15 16 17								20,18 18							
Na 22,99	Mg 24,31											AI 26.98	Si 28,09	P 30.97	S 32,07	Cl 35.45	Ar 39.95
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
39.10 37	40.08 38	44.96 39	47.87	50.94 41	52,00 42	54.94 43	55.85 44	58.93 45	58.69 46	63.55 47	65.39 48	69.72 49	72.61 50	74.92 51	78.96 52	79.90 53	83.80 54
Rb 85.47	5r 87,62	у 88.91	2r 91,22	ND 92,91	Mo 95.94	97.91	Ru 101,1	Rh 102.9	Pd 106.4	Ag 107.9	Cd 112,4	114.8	5n 118.7	5b 121,8	lе 127.6	L 126.9	Xe 131,3
55 Cs	56 Ba	57 La	⁷² Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	⁸⁶ Rn
132.9 87	137.3 88	138.9 89	178.5 104	180.9 105	183.8 106	186.2 107	190.2 108	192.2 109	195.1 110	197.0 111	200.6 112	204.4 113	207.2 114	209.0 115	(209) 116	(210) 117	(222) 118
Fr (223)	Ra (226)	Ac (227)	Rf (261)	Db (262)	Sg (263)	Bh (262)	Hs (265)	Mt (266)	Ds (281)	Rg (280)	Cn (285)	Nh (284)	Fl (289)	Mc (288)	Lv (292)	Ts (294)	Og (294)

Background: Typical charges when elements become ions

Background: Formation of ionic compounds

Progress clicker question (covers material we are learning now)

Go to <u>LearningCatalytics.com</u> and login with your MasteringChemistry (Session ID =

- 4) Which of the following statements is false? Feel free to use a periodic table.
 - A) An atom of selenium typically gains 2 electrons when it becomes an ion.
 - B) The typical ion of magnesium contains 12 p^+ and 10 e^- .
 - C) The potassium ion has 1 more electron than a neutral atom of potassium.
 - D) During chemical reactions, metals tend to lose e⁻ to form cations.
 - E) Aluminum's nearest noble gas is neon.

Application: Electrolytes

- Electrolytes are essential minerals that provide ions used in metabolic processes.
- Important electrolytes include: [Note: you won't be tested on these]
 - Na⁺ contributes to osmotic pressure; involved in generation of nerve impulses.
 - K⁺ helps establish resting membrane potential in neurons and muscle fibers.
 - **Cl**⁻ contributes to the osmotic pressure gradient and plays an important role in maintaining proper hydration.
 - Ca²⁺ necessary for muscle contraction, enzyme activity, and blood coagulation.
 - HCO₃⁻ (bicarbonate ion) acts as a buffer to regulate the body's pH.
 - PO₄³⁻ (phosphate ion) found in bones and teeth as well as in phospholipids, such as those that make up the cell membrane, and in ATP, nucleotides, and buffers.

	Nutrition F Serving Size 1 Bot	acts			
	Amount Per Serving	l			
	Calories 30	% Daily Value*			
	Total Fat Og	0%			
Π	Sodium 160mg	7%			
U	Potassium 45mg	1%			
	Total Carb. 8g	3%			
	Sugars 7g				
	Protein Og				
	Not a significant source of saturated fat, trans fat, choles vitamin A, vitamin C, calcium * Percent Daily Values are based of	calories from fat, sterol, dietary fiber, and iron. on a 2,000 calorie diet.			

Background: Formulas for ionic compounds

- Na and Cl are perfect pair for forming a compound: Na wants to lose 1e- and Cl wants to gain 1e-, so the transfer of 1e- results in 1+ and 1– ions.
- What about when Mg and F form a compound? Mg wants to lose 2e-, but F only wants to gain 1e-.

The Mg^{2+} and F^{-} ions combine in a 1:2 ratio, so MgF_2 .

- Resulting pattern :
 - Ions need to combine in a ratio that cancels their charges.
 - The same number of e- have to be gained as are lost
- What happens if Al and O react?
 - Al wants to lose 3e- to be Al³⁺
 - O wants to gain 2e- to be O²⁻
 - So, 2 x Al pairs up with 3 x O atoms.
 - This 2:3 ratio means the formula is Al₂O₃.
- Polyatomic ions (see class handout and next slide)
 - Sr^{2+} and $OH^{-} \rightarrow$ charges cancel in a 1:2 ratio \rightarrow $Sr(OH)_{2}$
 - Sr^{2+} and $PO_4^{3-} \rightarrow Charges cancel in a 3:2 ratio <math>\rightarrow Sr_3(PO_4)_2$

Background: Important polyatomic ions [Note: you'll be able to use this handout on the exams]

Element	Symbol	Element
aluminum	Al	krypton
antimony	Sb	lead
argon	Ar	lithium
arsenic	As	magnesium
barium	Ba	manganese
beryllium	Be	mercury
bismuth	Bi	neon
boron	В	nickel
bromine	Br	nitrogen
cadmium	Cd	oxygen
calcium	Ca	phosphorus
carbon	С	potassium
cesium	Cs	radium
chlorine	Cl	rubidium
chromium	Cr	selenium
cobalt	Co	silicon
copper	Cu	silver
fluorine	F	sodium
francium	Fr	strontium
gold	Au	sulfur
helium	He	tin
hydrogen	Н	titanium
iodine	Ι	xenon
iron	Fe	zinc

Monatomic ion	Symbol
bromide ion	Br
chloride ion	Cl
fluoride ion	F⁻
iodide ion	ľ
nitride ion	N ³⁻
oxide ion	O ²⁻
sulfide ion	S ²⁻

Symbol Kr Pb Li Mg Mn Hg Ne Ni Ν 0 Ρ Κ Ra Rb Se Si Ag Na Sr S Sn Ti Xe Zn

hydrogen carbonate ion (bicarbonate) HCO3 ⁻ hydrogen oxalate ion (bioxalate) HC204 ⁻ hydrogen phosphate ion HPO4 ²⁻ dihydrogen phosphate ion H2PO4 ⁻ hydrogen sulfate ion (bisulfate) HSO4 ⁻		Ions made by adding "H*"	Symbol
hydrogen oxalate ion (bioxalate) HC2O4 hydrogen phosphate ion HPO4 ² dihydrogen phosphate ion H2PO4 hydrogen sulfate ion (bisulfate) HSO4]	hydrogen carbonate ion (bicarbonate)	HCO3 ⁻
hydrogen phosphate ion HPO4 ²⁻ dihydrogen phosphate ion H2PO4 ⁻ hydrogen sulfate ion (bisulfate) HSO4 ⁻]	hydrogen oxalate ion (bioxalate)	HC ₂ O ₄
dihydrogen phosphate ion H ₂ PO ₄ hydrogen sulfate ion (bisulfate) HSO ₄]	hydrogen phosphate ion	HPO42-
hydrogen sulfate ion (bisulfate) HSO4 ⁻]	dihydrogen phosphate ion	H ₂ PO ₄ ⁻
]	hydrogen sulfate ion (bisulfate)	HSO4 ⁻
hydrogen sulfide ion (bisulfide) HS ⁻]	hydrogen sulfide ion (bisulfide)	HS⁻
hydrogen sulfite ion (bisulfite) HSO3 ⁻]	hydrogen sulfite ion (bisulfite)	HSO₃ ⁻

Polyatomic ion	Symbol
acetate ion	C ₂ H ₃ O ₂ ⁻
ammonium ion	NH_4^+
arsenate ion	AsO4 ³⁻
borate ion	BO ₃ ³⁻
bromate ion	BrO ₃ ⁻
bromite ion	BrO ₂ ⁻
carbonate ion	CO32-
chlorate ion	ClO3 ⁻
chlorite ion	ClO ₂ ⁻
chromate ion	CrO42-
cyanide ion	CN⁻
dichromate ion	Cr ₂ O ₇ ²⁻
hydroxide ion	OH
hypobromite ion	BrO ⁻
hypochlorite ion	ClO-

Polyatomic ion	Symbol
hypoiodite ion	10 ⁻
iodate ion	IO3 ⁻
iodite ion	10 ₂ -
nitrate ion	NO3 ⁻
nitrite ion	NO ₂ ⁻
oxalate ion	C ₂ O ₄ ²
perbromate ion	BrO4-
perchlorate ion	ClO4 ⁻
periodate ion	IO4 ⁻
permanganate ion	MnO4 ⁻
phosphate ion	PO43-
phosphite ion	PO33-
sulfate ion	SO42-
sulfite ion	SO32-
thiosulfate ion	S ₂ O ₃ ²⁻

Progress clicker question (covers material we are learning now)

Go to LearningCatalytics.com and login with your MasteringChemistry (Session ID =

5) Which of the following is the likely formula for the compound that forms when strontium reacts with fluorine?

D) SrF_2 E) Sr_3F

C) SrF

Answer:

- Based on their positions on the periodic table, we expect Sr to have a +2 charge and F to have a -1 charge.
- So, 2 of the F⁻ ions are needed to cancel out the Sr²⁺ charge.